
MATHEMATICS OF COMPUTATION 
VOLUME 41, NUMBER 163 
JULY 1983, PAGES 43-62 

Unigrid for Multigrid Simulation 

By S. F. McCormick and J. W. Ruge 

Abstract. This paper develops unigrid which is an algorithm that results from interpreting 
multigrid as it directly affects the fine grid approximation. Unigrid is theoretically equivalent 
to multigrid under certain assumptions, yet has different computational characteristics. 
Though it is generally less efficient, unigrid is very useful as a software tool for testing the 
feasibility of applying multigrid to a given problem. This is illustrated with several numerical 
examples. 

1. Introduction. The subject of this paper is unigrid, a method designed primarily 
for solving the equations arising from discretization of partial differential boundary 
value problems. The method is closely related and, under certain conditions, 
theoretically equivalent to multigrid, although all of the unigrid computations are 
performed on a single grid, as the name implies. Unigrid is generally more computa- 
tionally costly than multigrid, yet its simplicity is reflected in its relative ease of code 
implementation and use with existing applications software. This enables unigrid to 
act effectively as a software tool to simulate the multigrid approach that requires a 
more intensive design effort. 

Because of its conceptual simplicity, in a limited way the ideas basic to unigrid can 
be understood independently from those of multigrid. In fact, unigrid is described 
below as a directional iteration method and can therefore be considered from a 
purely algebraic point of view. However, the ability to use unigrid effectively 
depends on an understanding of the discretization and relaxation principles that are 
the foundation for multigrid. Simplicity of description should not compromise these 
principles, so it is advised that the reader have a basic understanding of multigrid 

(cf. [1 ]). 
On the other hand, for the reader that does not have this understanding, and for 

general concreteness, the next section contains a simplified description of unigrid 
applied to a one-dimensional model problem, However, the remaining sections 
assume familiarity with the concepts and notation of multigrid and include the 
general development of unigrid (Section 3); its relationship to multigrid (Section 4); 
some theory (Section 5); descriptions of several versions of unigrid together with 
code and output listings for a few that were implemented in BASIC on a Hewlett- 
Packard 9845B (Section 6); and the use of unigrid illustrated with some experiments 
on irregular boundaries and nonlinearities (Section 7). 

Received July 10, 1981; revised January 8, 1982. 
1980 Mathematics Subject Classification. Primary 65N99; Secondary 65N20, 65F 10. 

?1 983 American Mathematical Society 
0025-571 8/83/0000-1239/$05.50 

43 



44 S. F. McCORMICK AND J. W. RUGE 

2. A Simple Example. To describe unigrid in its simplest form, consider the 
two-point boundary value problem 

(2.1) -y"(x) = f(x), X E [0, I], 

y(O) = y(l) = 0. 

Assuming that h = 2` for some positive integer m, let n = 2m - 1, define the grid 
points by xk = kh, 1 < k < n, and suppose that 

(2.2) AhUh = f h, Uh E Rn 

denotes a suitable discrete approximation to (2.1). For example, the components of 

f h might correspond to f evaluated at the grid points, and Ah might denote the usual 
n by n tridiagonal central difference matrix with diagonal entries 2 h-2 and off-diago- 
nal entries -h2. 

In what follows, upper and lower case letters will denote, respectively, exact and 
approximate solutions of (2.2). 

The k th step of one sweep of Gauss-Seidel relaxation can now be written as 

(2.3) uh ,uh rh- eKhe) 
KAheh, eh) ek. 

Here, ek is the k th column of the n by n identity matrix, the residual is given by 
rh = A h -fh , and the left arrow denotes replacement, thereby avoiding iteration 
subscripts. 

Heuristically speaking, the main difficulty with Gauss-Seidel applied to (2.2) 
stems from its restriction to the use of local data. More specifically, information 
(i.e., residual error) at grid points distant from Xk takes many sweeps to properly 
affect Uk. Thus, the "spiked" grid functions ek depicted in Figure 1 do little to 
provide communication between widely separated grid points. 

h 
ek 

x x x k-I 
x k xk+ 

x x.. 
. . . X X X k-il k k-. .i 

FIGURE 1 

This interpretation suggests the use of "broader-based" directions such as those 
defined recursively by 

(2.4) , .d2k H12 + d H12 + .5d2kH+2 H = 2i, 1 < i < m - 1 
dHf 1 < k < 2' - 1, 

e{ H=h, I <k?n. 

These directions are illustrated in Figure 2 for the case m = 3. Note, in general, that 
these directions for level H are simply the grid functions e/H (defined on grid points 

XTk) linearly interpolated to grid h. 



UNIGRID FOR MULTIGRID SIMULATION 45 

dh dh dh dh dh dh dh 

[ xl x2 x3 x4 x 5 X6 X7 ] 

(2h h2h d2h 

Apsipler versione of unigrid chan then bew descibdua in termshofgonelt full sweep osgvern 

and H as follows: 
For each i = n, n -1,. . . ,1, let H = 2- and nH = 2- 1 and iterate via (2.5) for 

each k = 1, 2, .. .F,nH. 

Note that unigrid in this form consists of the directional iteration (2.5) with the 
d// cycling in order through the sequence 

For a fixed "level" of these directions specified by the superscript H, this process 
attempts to reduce the residual error in SH = span{drh: 1 o k a tH}. Analogous to 
the discussion above for H = h, it is effective only in terms of the transmission of 
information that is local relative to SH. Specifically, data from a point that is further 
away than a few directions is slow to propagate via (2.5). (Note in Figure 2 that xl 
and x7 are distant relative to level h but near relative to level 4h.) Errors due to 
relatively long distance data conne an be quickly reduced only on the broader 



46 S. F. McCORMICK AND J. W. RUGE 

levels H' = 2H, 4H,.... (Note that SH is a proper subset of SH/2 so that unigrid 

converges here only because error components in the complement of SH are reduced 
on the "narrower" levels H' = H/2, H/4,....) 

The next section generalizes these concepts in the framework of conventional 
multigrid notation. 

3. The General Case. As in [2], assume for focus that the problem to be solved is 
the d-dimensional operator equation 

(3.1) AU=f, UGE(, 

where A: 'XI - C2 is a linear operator and 5C1 and 'C2 are appropriate Hilbert 
spaces of functions defined on a region Q in Rd, d > 2. Assume that (3.1) admits 
discretizations by a family of matrix equations, parameterized by admissible grid 
sizes h > 0 and given by 

(3.2) AhUh = 
fh U"h 

h 

where 9"h = Rnh and n his an integer approximately proportional to h -d. (Note that 
nh = h- 1 for the example in the previous section.) The grid transfers are full 
rank linear operators, represented by I __: c hCh 9, that satisfy the consistency 
condition Ih*- = Ih* Ihh- for admissible h, h', h when h < h' < h or h > h' > h. 

The class of relaxation methods considered here can be written in terms of the 
directional iteration operator Gh: Kch X h yh which, with relaxation parameter 
X and residual rh = Ahuh -f h, is given by 

(3.3) Gh(uh, dh) A (rh, d) dhd 

The relaxation process is then specified by an ordered set of directions OD h 

(8h, 2-,... , nhh s o(, SO that one sweep with the initial guess u" consists of iterating 
via 

(3.4) uh Gh(Uh, dh) 

as dh varies over 6D . (Note that Gauss-Seidel is specified by the choice h - eh, and 
with some modification this development extends to more general relaxation schemes 
including Jacobi.) 

To define unigrid for a given admissible grid size h = Ho, suppose m > 1 is an 
integer so that Hq = 2qH0 are admissible, q s m, and define the direction sets 
according to 

(3.5) 6D=(dHq, d2 , 0 qm, 

where dkHq 
- Ih d . Thus, the directions on level q are just the relaxation directions 

on grid Hq transferred to grid h = Ho. 
With relaxation and cycling parameters ,i, v and i', and present approximation uh, 

then one of the many possible unigrid schemes is defined recursively by: 
One unigrid cycle on level q > 0 consists first of v unigrid relaxation sweeps via 

(3.4) using the ordered directions dkHq, k= 1,2,...,nHq, followed for q<m by ,u 
cycles on level q + 1 and for q = m by vc additional sweeps via (3.4). 

One complete unigrid cycle applied to (3.2) on the finest level h = Ho with 
right-hand sidefh and present approximation uh will be denoted by UGh(uh, fh). 



UNIGRID FOR MULTIGRID SIMULATION 47 

Remark 1. Except possibly for determining the direction, as the name implies, 
unigrid operations are performed on grid h = Ho only. Since the directions depend 
not directly on the operator A, but rather on the domain Q, then there are usually 
several ways for determining them without explicit appeal to the coarser grids Hq, 
q > 0. The simplest situation in two dimensions is for a rectangular domain Q where 
the discretization allows us to define I2h as linear interpolation. With Gauss-Seidel 
as the fine grid relaxation, for example, and with the usual double subscript notation 
and nh = Nh X Nh, then d h eh 1 for h Ho, 1 < k, / < Nh, and the coarse grid 
directions are defined recursively for h = Hq by 

(3.6) dk = 22 (lil )d+k?, 2WV 

Note that unigrid is invariant under a change of scale for these directions, allowing 
for the coefficients in (3.6) to be integers. Another of the many ways to define these 
directions is algebraically in terms of the i, j component of df q as in 

(3.7) d,k;(i,2j)= -k- {1(2 i2q - I1 j), I k-il ,l -jI<2q, 
kJ0, otherwise. 

This is the approach taken in the experiments reported in Section 6. 

4. Relationship to Multigrid. The unigrid cycle defined in Section 3 corresponds to 
the multigrid correction scheme (cf. [11). One such multigrid cycle on problem (3.2) 
with present approximation u h, right-hand side fh, and h = Hq is denoted by 
MGh(Uh, fh ) and defined recursively by: 

For q = m, MG(h, jh) consists of v + v' relaxation sweeps via (3.4) with 
directions 3h, k = 1, 2,..., nn. 

For q < m, MGh(U h, fh) consists of: 
(1) Perform v relaxation sweeps via (3.4) with directions 6,h, k = 1, 2,.. . nh. 

(2) Let r h = Jh - AhUh r2h= I=2hrh u2" -- 0, and perform ,t grid 2h cycles via 

MG2h(u 2h, 12h) with 12h = r 2h 

(3) Set Uh Uh + Ih 2h. 

Note that 1" for q > 1 is the residual transferred from a finer grid approximation 
and u h is an approximation to the actual error in that fine grid solution. (For q > 1, 
u his not an approximation to Uh, the solution of (3.2), since the right-hand side is f h 

only when h = Ho.) 
There are two main differences between the unigrid and multigrid techniques 

described. First, because only one grid is used in unigrid, its approximate solution 
reflects coarse level changes immediately. Thus, the corrected solution is automati- 
cally used in later computations. In the multigrid method, however, the fine grid 
residual is fixed at the time that the cycle progresses to coarser grids. Thus, the 
computations made for the coarse grid problem are not immediately used to improve 
the fine grid solution and update the residual. Second, to compute the low frequency 
corrections, unigrid uses the full solution rather than the coarse grid representation 
of fine grid error that MG uses. 

Ignoring computational work per step, then unigrid seems preferable to multigrid 
since all available information is used at every stage of the method. However, in this 



48 S. F. McCORMICK AND J. W. RUGE 

section it will be shown that these two approaches are in fact theoretically equivalent 
provided the MG formulation of the grid operators and transfers satisfies the 
variational conditions 

(4.1) A2h = 
I2hAj2hh 

(4.2) 2h (Ih )T 

(Actually, (4.2) need only hold up to some scale factor which we omit for simplicity.) 

THEOREM 1. Under these conditions and for the same initial approximation, uhI 

right-hand side, fh, and cycling parameters, i, v, and ,u, then UGh(uh, fh) and 
MGh(uh, fh) produce the same new approximation, that is, they are theoretically 
equivalent. 

Proof. First consider the following algorithm, intermediate to UG and MG, which 
for this proof is called immediate replacement multigrid. Using q here in place of Hq 
for superscripts and subscripts, then one cycle on grid Hq is denoted by 
MGIRq(u0, f 0) and is defined recursively by the following. (Note that MGIR is the 
same as MG except that each change in the coarse grid correction is immediately 
reflected in the fine grid approximation which is then used to update the fine grid 
residual and coarse grid equation.) 

For q = m, MGIRq(u0, f 0) consists of v + v0 relaxation sweeps via 

(4.3) u? *- uO + W, ( -( A u ), Sk )I?6q k = 1,2, . .. , nq. 

For q < m, MGIRq(u 0, f 0) consists of v relaxation sweeps via (4.3) followed by i 
level q - 1 cycles via MGIRq- i(u0, f 0). 

Note that the immediate fine grid correction is incorporated in the relaxation 
scheme. This scheme on a level q > 0 is just (3.3) with uP = 0, 0 <p < q, and 
rq I( f0 - Aouo) followed by interpolation of the correction directly to the finest 
grid. 

To compare MG and MGIR, consider a fine grid function, u?, that monitors and 
incorporates each MG coarse grid computation, that is, u-? is the function that would 
result if MG were terminated anytime in the cycle and all coarse grid corrections 
were interpolated through each finer grid to properly correct the finest grid ap- 
proximation u?. (The corresponding function for MGIR is simply u?.) In MG, 
assume relaxation is being performed on level k > 0. Let rq denote the current level 
q solution approximation for 0 s q s k, and let u be the level q monitoring 
approximation that incorporates the corrections from coarser grids. Thus, ajk = uk 
and uq = uq + Iqu"1 for q < k. Now suppose MG and MGIR are started with 
the same fine grid approximation, and consider the effect of one directional iteration 
during a relaxation sweep on level k > 0. In MGIR, the result of that iteration is 

44) unew = UO? + co o(f( AOuOld )dk ) 
(4.4) u~~~ew old +o (A kd k dk) I~k 



UNIGRID FOR MULTIGRID SIMULATION 49 

In MG, a change of adk kin Ck results in a change of aI2dk in iio, so the 
corresponding change for MG is 

(4 5) U 0ew =0 + @ r(r( k k d dk. 
new od (A kdk, dk)k 

Using the recursive definitions rq = - Aqu' and uq =q ? Iq+ iui+', then the 
MG monitoring residual satisfies 

k 

rk f k 
- Akiik 

- 
i0k( f- Aoiio) + 2 q- Aq)iiq. 

q=l 

By assumption (4.1), the second term in the above vanishes so that substitution into 
(4.5) yields 

(4.6) Unew oUld + A( kdk ?(ld), Id k 

If both algorithms begin with the same approximation, then, by induction, (4.4) 
and (4.6) imply that u?0 = ii at termination. Thus, assumption (4.1) ensures that MG 
and MGIR are equivalent. 

To compare MGIR and unigrid, note that the unigrid directional iteration 
corresponding to (4.4) is given by 

(4.7) U~~~ew U +~( Kfo Aouol Iod k) 
( ) ~~~~new old (A/dk Iod k ) k 

(AoIkodk, Idk) 2k 

Assumption (4.2) then implies that the unigrid iteration is just 

o ~~ +~ JkI( fo -Aouo ),k)Id U new o old + kAoIdk , dk) Ik 

which, with (4.1), becomes 

U new oU?ld 
+ co 

(A kd k dk) Ikod 

This is identical to (4.4), implying that unigrid and MGIR are equivalent methods. It 
follows that unigrid and multigrid are theoretically equivalent, so the proof of 
Theorem 1 is complete. 

Although (variationally formulated) multigrid is equivalent to unigrid in that it 
produces the same results, there are great differences in implementation and 
efficiency. There are many possible implementations of unigrid with widely ranging 
computational characteristics, so it is difficult to make explicit comparisons, but 
some general differences are evident: 

(1) The computational complexity of one multigrid cycle with tx < 3 is O(N), 
where N is the number of fine grid points. Unigrid cycles are significantly more 
expensive with complexity OfN log N) for ,L = 1 and 0(N2) for ,u = 2, provided 
some algorithmic modifications are made. 

(2) In terms of storage, unigrid essentially requires only a vector of length N, 
although a trade-off with efficiency can be made by providing more storage for the 
function f or for the directions. Usual multigrid algorithms require somewhat more 



50 S. F. McCORMICK AND J. W. RUGE 

storage than this; however, the difference between unigrid and multigrid storage 
requirements is not generally significant. 

(3) Unigrid code is typically very compact, partly because it lacks the modular 
structure of multigrid software. This is one reason that unigrid code can be 
developed very quickly. Also, there are fewer design choices with unigrid, since the 
coarse grid and grid transfer operators are automatically determined. This also adds 
to ease of programming, but restricts flexibility of the method. The design of unigrid 
also guarantees convergence independently of the choice of the coarse level iteration 
directions and cycling scheme, so mistakes may slow convergence but do not result 
in divergence as often as for multigrid. This may not be an asset, however. 

(4) This ease of programming and small program size make unigrid an effective 
method to test the convergence behavior of multigrid for many application prob- 
lems. It can easily be used to replace the usual relaxation or direct solvers in existing 
programs in order to perform such a feasibility test. Of course, the amount of work 
involved makes any comparison of solution time meaningless, but actual multigrid 
efficiency can be determined by applying the usual multigrid operation counts to the 
unigrid cycling scheme. Since the methods are equivalent in terms of results when 
multigrid is implemented according to (4.1)-(4.2), then unigrid will accurately 
represent the numerical performance of such a variationally formulated multigrid 
scheme. 

(5) As with multigrid, unigrid can be extended to apply to a broader class of 
problems. For example, for nonlinear problems the linear relaxation in (3.4) can be 
replaced by the more general procedure that changes uh by subtracting from it a 
proper multiple of dh so that the new residual is orthogonal to dh. (This will 
usually, but not always, require the use of an inner-loop scalar nonlinear solver such 
as Newton's method.) This extension is simpler than the nonlinear extensions of 
multigrid (e.g., Newton-MG and FAS) and generally more effective in accounting 
for the nonlinearity since all multigrid versions freeze at least some aspect of the 
nonlinearity during coarse grid correction. 

5. Theory. For the moment, assume that Ah is symmetric and positive definite for 
all admissible h. Define the energy inner-product and norm on j( h by 

(Xh yh )Ah = (Ahxh,yh ) 

and 

IxhIIAh = (AhXh, xh)1/2 

respectively. Let GSh denote the set of all Ah-unit vectors in span{wh: Ahwh = ,uwhI ,u 

s A), and let C\f denote its Ah-orthogonal complement. Let 9h signify one pass of 
(3.4) over the fine grid directions GD h, and assume 6D h spans cJh . For each integer 
v > 1, define gh as the restriction of 

hA) / 2((gh),v)' h(gh) h j-1/2 

to 'V^. (For Jacobi-type versions of (3.4),this latter operator simplifies to (gh)2,.) 

Then, with 2m the degree of the differential operator in (3.1), assume (cf. [2]): 
Al. There exist constants a > 0 and co < xo independent of h such that 

IIWh - R(I2hh)IIAh 
J 

C0(,h 2m) 



UNIGRID FOR MULTIGRID SIMULATION 51 

for all admissible h and all Wh E A,, where R(I2h) is the range of I2h. (Note that 
R(I2hh) is the span of the coarse grid directions, 6D h.) 

A2. There exist constants c,, c2 > 0 with c, < 1 and c2 < (cl + I)h-2 '/p(Ah), 
where p(Ah) is the spectral radius of A , such that 

p(A V) < max {Cl, I1 - C2Xh2m|} 

THEOREM 2. Suppose p > 1 and m and vC are such that the error from the coarsest 
level does not significantly contribute to the finest level error. Then there exists a v 
independent of h such that unigrid converges to the solution of (3.2) by a fixed linear 
rate independent of h. 

Proof. This theorem follows from the results of Section 4 that relate unigrid to 
multigrid and from the theory of [2] slightly modified to account for the class of 
relaxation methods depicted in (3.4). This is a fairly straightforward proof so it is 
omitted. 

Remark 2. A general nonsingular matrix problem can be transformed to a 
symmetric one via the normal equations 

(5.1) (Ah)TAhUh - (Ah)Tfh 

This is ill-advised for most methods of solution since it worsens the condition 
number of the problem in (3.2), but for unigrid (and multigrid) the disadvantages are 
usually not very great. Suppose, for example,that Ah is symmetric to begin with and 
that Jacobi's method with optimal relaxation parameter X yields a smoothing rate of 
e < 0.6, say. Then it is relatively easy to show that the smoothing rate for Jacobi 
with optimal parameter X (generally different than ?), applied to (5.1), exhibits a 
smoothing rate bounded by _1/4. This implies that four Jacobi sweeps on (5.1) reduce 
the oscillatory error better than one Jacobi sweep on (3.2). Since relaxation on (5.1) 
is significantly more expensive than on (3.2), the penalty of using (5.1) in lieu of (3.2) 
for a symmetric matrix Ah is about an order of magnitude increase in computational 
cost. (The smaller the smoothing rate e, the smaller is this penalty. Note that the 
actual penalty depends on the details of how the unigrid directions are implemented 
and how the operators Ah and (Ah)T are accessed.) For matrices Ah that deviate 
significantly from symmetry, the extra costs are correspondingly smaller to the point 
that unigrid on (5.1) will converge even though on (3.2) it may not. (Note the close 
relationship between (5.1) and the distributed relaxation schemes in [1]. In fact, the 
latter corresponds to a transformation of (3.2) via 

(5.2) Ah(Ah)TVh = f h Uh = (Ah)TVh, 

which has some cost advantages with multigrid. With unigrid the costs are similar. 
The main difference with either method is that relaxation on (5.2) minimizes actual 
error, and on (5.1) it minimizes residual error.) 

There are several advantages in using (5.1) as opposed to (3.2) besides generality. 
For example, not only is convergence of symmetric schemes better understood, but 
error control is better; that is, it is important that relaxation on (5.1) actually 
minimizes the residual in the d h direction. This is not true for (3.2) even when Ah is 
symmetric and positive definite, although it should be approximately so. (In fact, 
when direct application of unigrid to (3.2) exhibits convergence but does not 



52 S. F. McCORMICK AND J. W. RUGE 

monotonically reduce the residual error on the coarse levels, this is a signal that the 
directions for relaxation are improperly defined. They should be chosen to ap- 
proximate the smooth eigenvectors of Ah, that is, those that belong to the lower end 
of its spectrum. This would ensure that relaxation quickly eliminates the oscillatory 
eigenvector components of the error with little effect on the smooth ones. Since the 
spectrum of Ah that corresponds to these oscillatory components is relatively narrow, 
then there is a close relationship between error in the energy norm, for which 
relaxation is a minimizer, and the residual error norm. The residual norm is not 
generally minimized by relaxation, but a proper choice of directions coupled with a 
good smoothing rate ensures that it will be monotonically reduced.) 

Remark 3. A major advantage in using full unigrid (or full multigrid) is that the 
work required on a given level is fixed so that v need only be sufficiently large to 
produce the required error reduction. This is easiest to see for symmetric positive 
definite Ah by considering the level h truncation error in the c'energy norm given by 

Th hIIUh - UIIA. 

Here, Ih: XC_ t Ch and Ih: X(h -* SC are the discretization operators that, together 
with A, satisfy a continuous analogue of the variational conditions (4.1)-(4.2). For 
any u 2h E C }2h, with error e(2h) = I2hU2h - U, then uh = I2hhu2h has the same error 
e(h) = IhU - U, that is, e(h) = e(2h). Thus, if u2h is an approximation to U2h 

computed so that, say, 

IIu2h - U2h IIA2h < T2h 

then 

I e(2h) 2j, 2 

from which it follows that 

|uh - U IIAh =-I-hUh -IhUhIIA S||IIhUh UIIA =Ile(2h)IIA < 2T2h. 

If Tr satisfies an expression like Th ch2 and if v is large enough to reduce the error 
uh - Uh 1I by at least a factor of 8, then full unigrid would ensure the desired result 

II(h)II 
h 

Ile I||A < T 

6. Multigrid Simulation. There are many potential uses for unigrid, perhaps as a 
method in its own right, but more importantly as a simulator to test the feasibility of 
using multigrid in a given application (especially when software already exists for 
solving the given problem). Attributes that favor unigrid include compact code, 
small storage requirements, ease of design and programming potential for vectoriza- 
tion and parallelism, and general guarantee of convergence. However, although it is 
more efficient than most methods, it is more costly than multigrid. Nevertheless, it is 
very useful as a multigrid simulator where it benefits from ease of implementation 
and automatic implementation of the variational conditions (4.1)-(4.2). 

To apply unigrid to a given problem, the design question is mainly one of 
determining the directions in (3.5). Since a suitable choice for the interpolation 
operator is often dictated by the discretization process that produced the problem to 
be solved, then the only remaining decision is to choose the fine grid directions, that 
is, the relaxation process. Unigrid algorithm design is therefore a great simplification 



UNIGRID FOR MULTIGRID SIMULATION 53 

over that for multigrid since the latter also involves careful determination of the grid 
transfers, coarse grid operators, and scale factors. 

Some applications may require more flexibility in choosing the grid transfer and 
coarse grid operators than unigrid provides. However, if the discretization process 
that relates 'Ch to 'C is done properly, then a corresponding process can be used to 
relate JC2h to JCh. That is, a proper discretization should dictate the interpolation 
process. For the symmetric case at least, in some sense the best choices for the coarse 
grid transfer and coarse grid operator are specified by the variational conditions 
(4.1)-(4.2). The same is true for the nonsymmetric case when unigrid is applied via 
the normal equations (5.1). Thus, in terms of the original problem solution, unigrid 
should provide a very effective design. 

The inflexibility in unigrid design is precisely the same inflexibility inherent in 
Galerkin-type discretizations of (3.1). In fact, such discretization methods naturally 
satisfy (4.1)-(4.2). Unigrid automatically adopts this sort of relationship between 
grids regardless of how the finest grid was obtained. 

There are many possibilities in the use of unigrid as a multigrid simulator. One 
approach is to design a portable black box that implements unigrid on a fixed 
region, such as a rectangle, and for a fixed relaxation method, such as Gauss-Seidel. 
This software developement utility could be easily plugged into an existing possibly 
very complex applications program, for example, that already uses some form of 
relaxation such as SOR. This would require no knowledge of the program data 
structure, problem origin, scaling factors or other information that multigrid imple- 
mentation demands. 

Another important use of unigrid as a multigrid simulator is as a research tool. 
The authors have developed many unigrid versions written in BASIC for the 
HP9845B, none of which required more than an hour of program development. 
Many research questions were dealt with quickly using these routines for experimen- 
tation. A few versions of these programs together with sample output are displayed 
in Tables 3 through 10. 

The programs listed in Tables 3 and 5 apply to the problem 

(6.1) -Au + g u =f in 2 = (0, a) X (0,), 

u = b on a2, 

where a, ,B are determined by the program input and the functions f, g and b are 
specified internally. This is similar to, but an extension of, the problem example 
reported in [1]. Here we use g(x, y) = (x - y)ex?Y3, f(x, y) = sin(3(x + y)), 
b = cos(3(x + y)), and (a, ,B) = (3,2). 

Table 3 lists the code for the full unigrid algorithm where cycles start from the 
coarsest level. This process progresses to the next finer level only after a full cycle is 
performed on the present finest level. (It is best to use 1 as the number of cycles 
since full unigrid will then produce an approximation to the level of truncation error 
provided v is not too small. Usually v = 2 or 3 will do. See Remark 3 of Section 5.) 
Note that the problem is a nine-point discretization of (6.1) and is defined in 
statements 480-530 and functions FNB, FNF and FNG. Modifications to these 
statements and functions can be easily made to apply this code to other problems. 
Table 4 depicts output from a sample run with full unigrid. 



54 S. F. McCORMICK AND J. W. RUGE 

TABLE 3. Full unigrid code 

18 DIM U(97,65),R(6) 
20 DISP "# GRIDS"; 
30 INPUT N 
40 DISP "# X POINTS, INCL. BOUNDARY POINTS"; 
5 INPUT I1 
60 DISP "# Y POINTS,* INCL. BOUNDARY POINTS"; 
70 INPUT Ji 
90 DISP "H"; 
90 INPUT H 
100 DISP "# RELRXpTIONS "; 
110 INPUT NO 
120 DISP "CYCLING PARAMETER"; 
130 INPUT MO 
140 DISP "# CYCLES (1 IS USURLLY BEST)"; 
150 INPUT Cl 
160 PRINT "# GRIDS=";N;" #X POINTS="';Il;"' #Y POINTS=";J1;" H=";H 
170 PRINT " RELRXATIONS=";NO;" CYCLING PRRAMETER=-";MO;" CYCLES";Cl 
180 REM ****INITIRLIZE CYCLING CONTROL ARRRY 
190 FOR K=l TO N 
200 R(K)=M0 
210 NEXT K 
220 REM ****ENFORCE BOUNDARY CONDITIONS 
230 FOR 1=1 TO I1 
240 U(I,1)=FNB(I,1) 
250 U(I,Jl)=FNB<I,Jl) 
260 NEXT I 
270 FOR J=1 TO J1 
280 U(1,J)=FNB(l,J) 
290 U(Il,J)=FNB(Il,J) 
300 NEXT J 
310 REM ****DEFINE CURRENT FINEST GRID L 
320 FOR L=O TO N-I 
330 R(N-L)=Cl 
340 REM ****DEFINE CURRENT GRID K 
350 K=N-L 
360 REM ****DEFINE GRID FACTOR (Ml=l FOR FINEST GRID) 
370 Ml=2, (K-1) 
380 REM ****FROM HERE TO STATEMENT 690, PERFORM NO SWEEPS ON GRID K AND 
390 REM COMPUTE THE DYNAMIC RESIDURL ERROR E 
400 FOR NO-=1 TO NO 
410 E=d 
420 FOR I=l+Ml TO Il-Ml STEP MI 
430 FOR J=l+Ml TO Jl-Ml STEP Ml 
440 A1=0 
450 R1=0 
460 FOR I3=I-Ml+l TO I+Ml-l 
470 FOR J3=J-Ml+l TO J+Ml-l 
480 D=S+FNG(I3,J3)*H*H*3 
490 R=D*U1I3, 13)-U(I3, J3-1)-U(I3,J3+1)-U(I3-1,J3'-U(I3+1,J3) 
500 R=(R-U(I3+1,13+1)-U13+1,13-1)-U1l3-1,J3+1)-U I3-1,13-1 )/3 
510 R=R-NFCFI3,J3 *H*H 
520 R3=D*FND(I3,J3)-FND(I3,J3+1)-FND(I3,J3-1)-FND'13+1,J3 -FND(I3-1, J3 
530 A3=(A3-FND(I3e1,J3+l)-FND(I3+l,J3-l)-FNDI3-l,J3+1 -FND I3-l,33-l )'3 
540 R1=R1+FND(I3,J3)*R 
550 A1=Al+FND(I3,J3).*A3 
560 NEXT J3 
570 NEXT I3 
580 S=R lAl 
590 E=E+RI*Rl 
600 FOR I3=I-Mt+l TO I+M1-l 
610 FOR J3=J-Ml+l TO J+M1-1 
6,0 UkI3,J33=U I3,J3)-S*FNtDtI3,J3) 
630 NEXT J3 
640 NEXT I3 
650 NEXT J 
660 NEXT I 
670 EwSQR(E)/M1 H 
600 PRINT "LEYEL-";K;" ERROR"*;E 
690 NEXT tNS 
700 REM ****THE FOLLOWING IS FOR GRID CYCLING CONTROL 
710 IF K=N THEN 770 
720 IF R(K)=0 THEN 760 
730 R(K)=R(K)-l 
740 K=K+l 
750 GOTO 370 
760 R(K)=MO 
770 K-K-1 
780 IF K>=N-L THEN 370 
790 NEXT L 
800 REM ****FNB DETERMINES THE BOUNDRRY DRTR 
810 DEF FNB(I,J)=COS(3*<(I+J-2)*H) 
820 REM ****FND COMPUTES THE UNIGRID DIRECTIONS 
830 DEF FND(13,J3)=(Ml-RBS(I-I3))*(Ml-ABS(J-13))/(Ml*Ml) 
840 REM ****FNF IS THE RIGHT HAND SIDE OF THE EQUATION 
850 DEF FNF(I3,J3)=SIN(3*(I3+J3-2)*H) 
860 REM ****FNG IS THE COEFFICIENT OF THE ZERO ORDER TERM IN THE EQUATION 
870 DEF FNG(13,J3).(13-J3)*H*EXP((13+J3-2)*H-3) 
880 END 



UNIGRID FOR MULTIGRID SIMULATION 55 

TABLE 4. Full unigrid output 

#GRIDS=4 
#X=25 #y=17 
H=.125 #RELX=2 
CYC.PARAM.=2 #CYC=1 

LVL=4 ERR=1.6EO LVL=3 ERR=9.6E-2 
LVL=4 ERR=1.OE-1 LVL=3 ERR=2 2E-2 
LVL=3 ERR=3.6EO LVL=4 ERR=3 6E-3 
LVL=3 ERR=5.2E-1 LVL=4 ERR=2.9E-4 
LVL=4 ERR=6.2'-2 LVL=3 ERR=4.4E-3 
LVL=4 ERR=5.OE-3 LVL=3 ERR=9.8E-4 
LVL=3 Err=7.1'-2 LVL=4 ERR=1.5E-4 
LVL=3 ERR=1.3E-2 LVL=4 ERR=6.5E-9 
LVL=2 ERR=1.6E1 LVL=3 ERR=1.4E-4 
LVL=2 ERR=2.7EO LVL=3 ERR=2.4E-5 
LVL=3 ERR=4.3E-1 LVL=2 ERR=1 .OE-1 
LVL=3 ERR=8.2E-2 LVL=2 ERR=2. 5E-2 
LVL=4 ERR=1 .3E-2 LVL=3 ERR=4. 8E-3 
LVL=4 ERR=9.5E-4 LVL=3 ERR= 1 lE-3 
LVL=3 ERR=1.6E-2 LVL=4 ERR=1 .OE-4 
LVL=3 ERR=3.4E-3 LVL=4 ERR=9.4E-6 
LVL=4 ERR=5.OE-4 LVL=3 ERR=2. 8E-4 
LVL=4 ERR=1. 1 E-6 LVL=3 ERR=6.2E-5 
LVL=3 ERR=4.7E-4 LVL=4 ERR=9. 3E-6 
LVL=3 ERR=7.6E-5 LVL=4 ERR=2.4E-8 
LVL=2 ERR=5.5E-1 LVL=3 ERR=1 .OE-5 
LVL=2 ERR=1.2E-1 LVL=3 ERR=1.7E-6 
LVL=1 ERR=4.9E1 LVL=2 ERR=5. 1E-3 
LVL=1 ERR=1.OE1 LVL=2 ERR=1.2E-3 
LVL=2 ERR=2.1EO LVL=1 ERR=1.8EO 
LVL=2 ERR=5.1E-1 LVL=1 ERR=4.OE-1 

Table 5 contains the code for a very simple version of unigrid applied to the usual 
five-point discretization of (6.1). The listing shown produces the coarse-to-fine level 
cycling scheme depicted in column one of Table 4. Note that the problem for this 
sample run has 5985 unknowns. To demonstrate the effect of fine-to-coarse level 
cycling, statements 240 and 510 were modified by replacing N - K by K - 1. Note 
the decrease in accuracy for this run. This is due to the smoothness of the initial 
error which for the first cycle or so favors coarse grid relaxations. Otherwise, the two 
cycling schemes behave almost identically as is evidenced by the convergence rates 
of the last few cycles. 

Statements 170-210 in the sample code of Table 5 define the boundary and the 
initial guess for unigrid. The corresponding statements 220-300 for the full unigrid 
code of Table 3 define the boundary but yield zero as an initial guess (for operating 
systems like the HP9845B, at least). This was done to mimic the full multigrid 
algorithm which is usually implemented when a good guess for the grid solution is 
unavailable. Had this code incorporated the same statements as in Table 3, it would 
in effect be applying full unigrid to the fine grid residual equation 

AhUh = jh 

where fh = fh -Ahbh and bh is the initial guess provided by these statements. (In 
fact, use of full unigrid is often advised even when bh is a good approximation to 
Uh, such as for implicit discretization of time-dependent problems. This is especially 
true for extensions to nonlinear problems.) 



56 S. F. McCORMICK AND J. W. RUGE 

TABLE 5. Simple cycle unigrid code 

10 DIM U(97.65) 
20 DISP "# GRIDS"; 
30 INPUT N 
40 DISP "# X POINTS, INCL. BOUNDIPY FPO INTS "; 
50 INPUT II 
60 DISP "# Y POINTS, INCL. BOUNDARY POINTS"; 
70 INPUT JI 
80 DISP NH"; 
90 INPUT H 
100 DISP `# RELAXATIONS"; 
110 INPUT NO 
120 DISP "# CYCLES"; 
130 INPUT Ci 
140 PRINT # GPIDS=";N; #X POINTS=":;Ii; " #Y POINTS=T J1; H=";H 
150 PRINT # RELAXATIONS=`:N;" # CYCLES1;C1 

160 C=0 
170 FOR 1=1 TO I1 
180 FOR J=I TO J1 
190 U(I,J)=COSY3*(I+J-2C*H) 
200 NEXT J 
210 NEXT I 
220 C=C+1 
230 FOR K=i,TO N 
240 Mi=2-(N-K) 
250 FOR N8=1 TO NO 
260 E=0 
270 FOR I=i+MI TO Il-Mi STEP MI 
280 FOR J=1+Ml TO J1-Mi STEP MI 
290 Ai=O 
300 Ri=0 
310 FOR I3=I-Ml+i TO I+MI-I 
320 FOR J3=J-Ml+l TO J+M1-I 
330 D=4+EXP((I3+J3-2N-HN H*H 
340 R=D*U(I3,J38-IJ(I3.T--1 -LI(I3.J3+1-LI.I3-1.J3-LI :+1,J . 

350 R=R-SINk3* I3+J3- '_-H)*H*H 
360 R3=DFPND I3, J3)-FND I3, J3+1 )-F4D. I3. J3-1 -FP4D I3+1. J: -FP4D1I-1, ] 33 
370 Ri=Ri+FP4D I3, J3*R 
380 RI=Ri+FND(I3,J3 *A3 
390 NEXT J3 
400 NEXT I 3 
410 S=Ri/AI 
420 E=E+Ri*Rl 
430 FOR I3=I-Ml+l TO Ir+Mi-i 
440 FOR J3=J-M1l+l TO J+Mi-i 
450 U( I3,J3)=U( I3,3 J-S*FPNDkI 3.33 
460 NEXT J3 
470 NEXT I3 
480 NEXT J 
490 NEXT I 
500 E=SQP(E)/Ml H 
510 PRINT "LEVEL= 14N-K+1; ? ERPOR= ;E 
520 NEXT N8 
530 NEXT K 
540 IF C CI THEN 220 
550 DEF FND(I3, 33=fMI-AB S-I3 .I_I; M1-Ml-ABSk-J33j MliPllr 
560 END 

To estimate the computational complexity of a multigrid algorithm corresponding 
to these unigrid codes, work units (defined as in [1] as the cost of one fine grid 
relaxation sweep) can be accumulated for output. For Table 5, this could be done by 
adding statements 

165 W=0 
255 W= W+ (1.0/Mi) 
545 PRINT "TOTAL WORK "; W. 

For the run in column one of Table 6 this would yield 
TOTAL WORK = 8. 

These codes determine and output the dynamic residual error norm using the 
discretized P2(9) norm on the grid corresponding to the level in use. However, 
unigrid and variationally formulated multigrid are based on minimizing the energy 
norm of the actual error, which is equivalent to minimizing the functional 

Fh(uh) = AhUh, Uh )- 2( f h uh ). 



UNIGRID FOR MULTIGRID SIMULATION 57 

TABLE 6 

#GRIDS=6 H=1/32 #GRIDS=6 H=1/32 #GRIDS=4 H=1/8 
#X=97 #Y=65 #X=97 #Y=65 #X=26 #Y=17 CYC.PAR.=2 
#RELX=1 #CYC=6 #RELX=1 #CYC=7 #RELX=2 #CYC=1 

LVL=6 ERR=9.2EO LVt.=1 ERR=1.4E2 LVL=4 ERR=1.5E0 
LVL=5 ERR=3.7E-l LVL=2 ERR=1.2E2 LVL=4 ERR=6.8E-2 
LVL=4 ERR=3.3E-l LVL=3 ERR=8.4E1 LVL=3 ERR=3.3EO 
LVL=3 ERR-3.OE-l LVL=4 ERR=3.6E1 LVL=3 ERR=4.OE-1 
LVL=2 ERR=3.lE-l LVL=5 ERR=7.OEO LVL=4 ERR=1.6E-2 
LVL=l ERR=3. 5E-l LVL=6 ERR=3.2E-1 LVL=4 ERR=1.4E-3 
LVL=6 ERR=7.9El LVL=1 ERR=6.4E1 LVL=3 ERR=5.OE-2 
LVL=5 ERR=l.6EO LVL=2 ERR=2.3E1 LVL=3 ERR=7.5E-3 
LVL=4 ERR=2.3EO LVL=3 ERR=8.2EO LVL=2 ERR=1.4E1 
LVL=3 ERR=3.3EO LVL=4 ERR=2.5EO LVL=2 ERR=2.2EO 
LVL=2 ERR=4.2EO LVL=5 ERR=4.2E-1 LVL=3 ERR=3.4E-1 
LVL=1 ERR=6.4EO LVL=6 ERR=1.5EO LVL=3 ERR=6.1E-2 
LVL=6 ERR=4.7E-2 LVL=l ERR=2.OE1 LVL=4 ERR=3.8E-3 
LVL=5 ERR=9.3E-2 LVL=2 ERR=5.lEO LVL=4 ERR=2.6E-4 
LVL=4 ERR=2.4E-1 LVL=3 ERR=1.4EO LVL=3 ERR=1.6E-2 
LVL=3 ERR=5.7E-1 LVL=4 ERR=2.5E-1 LVL=3 ERR=2.6E-4 
LVL=2 ERR=1.1EO LVL=5 ERR=3.1E-2 LVL=4 ERR=3.4E-4 
LVL=1 ERR=1.9EO LVL=6 ERR=3.4E-4 LVL=4 ERR=4.5E-6 
LVL=6 ERR=2.7E-3 LVL=1 ERR=5.3EO LVL=3 ERR=3.6E-4 
LVL=5 ERR=8.7E-3 LVL=2 ERR=1.3EO LVL=3 ERR=5.8E-5 
LVL=4 ERR=4.2-2E-2 LVL=3 ERR=2.7E-1 LVL=2 ERR=4.3E-1 
LVL=3 ERR=l .2E-1 LVL=4 ERR=3.3E-2 LVL=2 ERR=8.4E-2 
LVL=2 ERR=3.OE-1 LVL=5 ERR=3.OE-3 LVL=1 ERR=5.lEl 
LVL=1 ERR=6.5E-1 LVL=6 ERR=1.9E-5 LVL=1 ERR=1.3E1 
LVL=6 ERR=2.5E-4 LVL=1 ERR=1.9EO LVL=2 ERR=3.4EO 
LVL=5 ERR=1.4E-3 LVL=2 ERR=3.8E-1 LVL=2 ERR=1.1EO 
LVL=4 ERR=8.3E-3 LVL=3 ERR=5.3E-2 LVL=3 ERR=3.4E-1 
LVL=3 ERR=2.9E-2 LVL=4 ERR=4.9E-3 LVL=3 ERR=1.2E-1 
LVL=2 ERR=8.8E-2 LVL=5 ERR=3.4E-4 LVL=4 ERR=2.3E-2 
LVL=1 ERR=2.4E-1 LVL=6 ERR=6.5E-6 LVL=4 ERR=2.4E-3 
LVL=6 ERR=5.6E-5 LVL=1 ERR=7.OE-1 LVL=3 ERR=3.OE-2 
LVL=5 ERR=3.5E-4 LVL=2 ERR=1.1E-1 LVL=3 ERR=8.OE-3 
LVL=4 ERR=1.9E-3 LVL=3 ERR=1.2E-2 LVL=4 ERR=1.6E-3 
LVL=3 ERR=8.1E-3 LVL=4 ERR=6.8E-4 LVL=4 ERR=3.OE-6 
LVL=2 ERR=2.8E-2 LVL=5 ERR=4.6E-5 LVL=3 ERR=1.6E-3 
LVL=1 ERR=9.4E-2 LVL=6 ERR=1.2E-6 LVL=3 ERR=2.6E-4 
Simple cycle UG LVL=1 ERR=2.7E-1 LVL=2 ERR=2.5E-1 
Simple ,cycleUG LVL=2 ERR=3.OE-2 LVL=2 ERR=6.8E-2 
output (coarse-to- LVL=3 ERR=3.OE-3 LVL=3 ERR=1.4E-2 

fine cycling) LVL=4 ERR=1.3E-4 LVL=3 ERR=3.9E-3 
LVL=5 ERR=1.2E-5 LVL=4 ERR=5.2E-4 
LVL=6 ERR=2.3E-7 LVL=4 ERR=4.8E-5 

Simple cycle UG LVL=3 ERR=2.8E-3 
output (fine-to- LVL=4 ERR=2.84E-4 
coarse cycling) LVL=4 ERR=4.4E-5 

LVL=3 ERR=4.8E-5 
LVL=3 EPR=8.2E-6 
LVL=2 ERR=1.3E-2 
LVL=2 ERR=3.4E-3 
LVL=1 ERR=4.8EO 
LVL=1 ERR=2.3EO 

Full UG output 
(coarse level bounary 
approximation by deflation) 

In fact, the square of the energy norm error is just Fh(uh) - Fh(Uh). (Fh(Uh) may 
be estimated by simple extrapolation of the Fh(Uh).) It may therefore be more 
practical to compute this functional at the end of each relaxation sweep, expecially 
since it will more clearly represent the convergence behavior of the algorithm. This 
can be done in just a few statements and is especially useful for program debugging. 
(The reader is warned to be sure that the boundary conditions are incorporated in 
fh.) 



58 S. F. McCORMICK AND J. W. RUGE 

TABLE 7. Full unigrid code 

(modified for coarse level boundary approximation by direction truncation) 

10 DIIM U-97,65',RF6) 
20 DISP "# GRIDS"; 
30 INPLUT N 
40 DISP "` X POINTS, INCL. BOUNDARY POINTS"; 
50 INPUT It 
60 DISP "8 Y POINTS,* INCL. BOUNDARY POINTS t; 
70 INPUT J1 
80 DISP "H"; 
90 INtPUT H 
100 DISP "` PELA::ATIONS*; 
1i10 INPUT tNO 
120 DISP "C'Y'CLING PhRFMETER"; 
130 INPUT '10 
140 DISP "# CYC:LES I 1 IS USUFLL'Y' DEST)"; 
150 INPUT Cl 
160 PRINT "I GRIDS="'N; " #;: POINTS="; II; " #' POItT-="; .1; H=":H 
170 PRINT "P PELA::ATION-.="`;'No; CYCLING PAPAMETEF=" ;1;:` " * CYCLES";C1 
180 PEM -**INITILIZE C' CLING CONTPOL FPPh'A' 
190 FOP = 1 TO N 
200 P , R =MO 
210 0NE:2:T I 

2 2 0 PEM *=-EfFCPRCE B:OUNDARY CONDITIONS 
23k FOP I=1 TO II 
24k UkIl I, '=FNfB I, 1J 

25 0 UkI. J1)=FPNB I, J1 
260 NE::T I 
270 FOR 1=1 TO J1 
280 Ukl1, J3 =FN BI1, J 
290 U I`I, 3J=FND: Il, J 
30kO NEXT 3 
310 REM --'DEFPINE CUPPENT FINEST GRID L 
320 FOR L=0 TO N-I 
330 PkN-L =C1 
340 REM -**EFINE CURPENT GPID f 
35k) ~=N-L 
360 REMI -*+*DEEFINE OPPIDl FPCTCTP 0Mi=1 FOR FIPNEST GR IDl) 
370 M1=2 (fE 1- 
380 REM -+*FPPtIM HEPE TO -STATEMENT 690, PEFFCFPM NC S.WEEPS ON GRID f AND 

390 REM COMPUlTE THE DYNAMIC PESIDUAL EPFR'i E 
400 FPOR Nt=1 TO NO 
410 E=k 
420 FOR I=l+Ml TO Il-i STEP MI 
430) FOR J=i+M1 T) J31-Mi STEP MI 
440 hi=k) 
450 R1=Q 
455 I2=I+M1-i 
456 IF I2-Il THENJ 460 
457 Ic=11-1 
460 FOR I1=I-M1+1 TO I2 
470 FPOP J3=J-M1+1 TO J+Mi11 
480) D=S+FPNG I1::,3J3'HH-3 

490 P=DU' I3,J3 '-U(13. J3-1 '-U' 13, J3+1 '-Uk I3-1J33 I3+1. J33 
500 P=fP-UfI3+1, J---+1 -'-UI-+13 -1-U I3-1,J3+1 -UI' I -1 J -1 'J 3 

510 R=P-FNPF I 3, J3 =H-H 
520 R3=D=FNEl' I13, J3 '-FPilN I:.,l+l _I-D-FI I3D 3,J3-1 -FPND' I F+1 '-PNDk I3-IJ 33 
530 Ah3=A3-FPND I--+1 T-+1 -,PJ-: I3+i'+ -Js-PN'I.-1 33+1 -FPND' ID -1,J3-i') 3 

540 Rl=Ri+FPND, I3,J 3*-R 
S50 AI=Ai+FPNDkI3, J.3,IA3 
560 tE::T 13 
570 N EXT I 
580 S=P1 Al 
590 E=E+Pl*P1 
600 FPOP I3=I-M1+1 TO I+M1-1 
610 FOP J =J-M1+1 TO J+M1-i 
620 U t I 3, 13 =U, I 3, J33: --P*FND I 3, J 3 
630 IE NET J3 
640 NEX.,T IS 
650 NE::T J 
660 NEXT I 
6770 E=SP.CPE)"M41-H 

680 PRINT "LEVEL=`; ;` EPRP)R=" ; E 
690 NEXT NS 
700k PEM -++-THE FOLLOWING IS FOR GRID CYCLING CONTPOL 
710 IF V=N THEN 77k0 
720 IF RkK =O THEN 760 

730 R(K)=RfKC -1 
740 K=K+1 
75k GOTO 37k 
760 R(k)=Mk) 
770 K=K- 1 
780 IF k v=N-L THEN 370 
790 NEXT L 
800 REM +-**Ft DETERMINES THE BOUNJDFiRY DATA 
810 DEF FNPD:I,J-=COSI`3*'I+J-2-,H 
82k REM +***FND COMPUTES THE UN IGPID DIRECTIONS 
830 DEF FND'I3,J3='M1-Al-ESCI-13)"-CM1-ABSCJ-J3)/(Ml**Ml) 

840 REM *+**FNF IS THE RIGHT HAND SIDE OF THE EIQUATION 
850 DEF FPNFPI3.JJ3t)=SIN(3*tI3+J3-2)*H) 
860 REM ++**FPNG IS THE COEFFICIENT OF THE ZERO ORDER TERM IN THE EQUATION 
870 DEF FNG(I13,J3)=(13-J3'*H*EXP<(I3+J3-2)*H-3) 
88k) END 



UNIGRID FOR MULTIGRID SIMULATION 59 

TABLE 8. Full unigrid output 
(coarse level boundary approximation by direction truncation) 

FGRIDS=4 H=1/8 
#X=26 #Y=17 CYC.PAR=2 
#RELX=2 #CYC=1 

LVL=4 ERR=3.5EO 
LVL=4 ERR=8.8E-2 
LVL=3 ERR=5.5EO 
LVL=3 ERR=6.4E-1 
LVL=4 ERR=4.6E-2 
LVL=4 ERR=3.1E-3 
LVL-3 ERR=7.2E-2 
LVL=3 ERR=7.6E-3 
LVL=2 ERR=1.8E1 
LVL-2 ERR=2.5EO 
LVL=3 ERR=3.7E-1 
LVL=3 ERR=6.4E-2 
LVL=4 ERR=2.4E-3 
LVL=4 ERR=1.4E-4 
LVL=3 ERR=1.6E-2 
LVL=3 ERR=2.7E-3 
LVL=4 ERR=3.8E-4 
LVL=4 ERR=3.9E-6 
LVL=3 ERR=4.4E-4 
LVL=3 ERR=7.4E-5 
LVL=2 ERR=4.5E-1 
LVL=2 ERR=8.8E-2 
LVL=1 ERR=4.6E1 
LVL=1 ERR=7.7EO 
LVL=2 ERR=1.4EO 
LVL=2 ERR=3.2E-1 
LVL=3 ERR=6.2E-2 
LVL=3 ERR=1.3E-2 
LVL=4 ERR=7.9E-5 
LVL=4 ERR=1.3E-6 
LVL=3 ERR=3.1E-3 
LVL=3 ERR=5.6E-4 
LVL=4 ERR=7.1E-5 
LVL=4 ERR=5.1E-7 
LVL=3 ERR=8.4E-5 
LVL=3 ERR=1.5E-5 
LVL=2 ERR=6.4E-2 
LVL=2 ERR=1.5E-2 
LVL=3 ERR=3.1E-3 
LVL=3 ERR=7.6E-4 
LVL=4 ERR=1.6E-5 
LVL=4 ERR=1.3E-6 
LVL=3 ERR=1.8E-4 
LVL=3 ERR=2.7E-5 
LVL=4 ERR=3.7E-6 
LVL=4 ERR=4.7E-8 
LVL=3 ERR=4.4E-6 
LVL=3 ERR=7.1E-7 
LVL=2 ERR=3.1E-3 
LVL=2 ERR=6.7E-4 
LVL=1 ERR=1.5EO 
LVL=1 cRR=3.OE-1 

The codes listed in Tables 3 and 5 are intended neither for efficiency nor 
structure. In fact, the runs depicted in Table 6 required several hours of HP9845B 
execution time. The main goal was ease of programming and of program modifica- 
tion. Dr. Bill Holland of the National Center for Atmospheric Research has a very 
well-developed version of unigrid that uses stencils to define the directions and is 
extensively modularized and structured. It is implemented on his Apple home 
computer and is being used to test the applicability of unigrid and multigrid to the 
time-dependent irregular domain diffusion problems that arise in atmospheric 
studies. 



60 S. F. McCORMICK AND J. W. RUGE 

TABLE 9. Nonlinear simple cycle unigrid code 

10 DIM U(97,65) 
20 DISP '# GRIDS"; 
30 INPUT N 
48 DISP *# X POINTS, INCL. BOUNDARY POINTSJ ; 

50 INPUT II 
60 DISP `# Y POINTS, INCL. BOUNDARY POINTS"; 
70 INPUT J1 
80 DISP 'H"; 
90 INPUT H 
100 DISP `# RELAXATIONSb ; 
110 INPUT NO 
120 DISP `# CYCLES"; 
130 INPUT Cl 
135 DISP 'LAIMBDA"; 
136 INPUT L 
140 PRINT * GRIDS=`;N4; #N POItJTS="; Il; W# P0INT$=t-; J1` H=;;H 
150 PRINT # RELA;:ATICJS=`;NQ: # C`YCLES= `'11:` LAMiBDA=- L 

160 C=8 
170 FOR 1=1 TO I1 
180 FOR J=1 TO J1 
190 U(I,J)=COSt3*kI+J-2*H) 
200 NEXT J 
210 NEXT I 
220 C=C+l 
230 FOR K=1 TO N 
240 M1=2' N-K) 
250 FOR N8=1 TO NO 
260 E=O 
270 FOR I=l+Ml TO Il-Mi STEP Ml 
280 FOR J=1+111 TO J1-MI STEP MI 
290 R1=0 
308 RP1= 
310 FOR I3=I-Ml+l TO I+Ml-l 
320 FOR J3=J-Ml+1 TO J+M1-l 
330 D=4+E:MPk(I3+J3-2)'*H=)HH 
340 R=D*IJ 13,r3 -U I:, 33-1 "-U I 33+1 3-U I3-1,J3 *-U* I3+1,r. 

344 G=L*EXUP(U(IS3,J3) >*H*H 
345 R=R+G 
350 R=R-SIN 3= I 3+J3-2)*H =*H4H 
355 D=D+G 
360 A3=D+PND I3, 35-PND I 33+1 -PND I3, J3-1 -PNDk I3+1,T3 -P11W' I3-l, 33' 

370 Rl=FI*FfND(I3,J3JR*P 
380 Al=Al+FNDkI3,J3-RA3 
390 NEXT .3 
400 NEXT I3 
410 S=Rl Al 
420 E=E+RI*P1 
430 FOR I3=I-Ml+l TO I+Ml-l 
440 FOR J3=J-Ml+l TO J+Ml-l 
450 U<I3, J3 =UkI3,J3 --*FND I3, J3, 
460 NEXT J3 
470 NEXT I3 
480 NEXT J 
490 NE'T I 
500 E=SQRE Ml H 
518 PRINT 'LEVEL=`;N-K+l;` ERROR=";E 
520 NEXT NS 
538 NEXT 1 
540 IF C`,C1 THEN 220 
558 DEF PNDr IS, 35 = Ill-ABS I-I 3 '*Ml-RES J-33 Ml+Ml 

560 END El 

7. Sample Uses. This section illustrates, by way of two examples, the ease of use of 
unigrid as a research tool to investigate design questions for multigrid application to 
a given problem. 

Discretizations of nonrectangular regions often have the property that the 
boundary lies along lines of the grid on which the problem is to be resolved. This is a 
computational advantage, especially when vector computers are to be used. Unfor- 
tunately, the coarser grids needed for multigrid application do not generally share 
this grid alignment feature unless the coarser boundaries are subject to approxima- 
tion. 



UNIGRID FOR MULTIGRID SIMULATION 61 

TABLE 1 0 

#GRIDS=3 H=1/8 #GRIDS=3 H=1/8 
#X=13 #Y=9 #X=13 #Y=9 
#RELX=2 #CYC=5 #RELX=2 #CYC=5 
LAMBDA=. 1 LAMBDA=2 

LVL=3 ERR=7.3EO LVL=3 ERR=6.7EO 
LVL=3 ERR=1.2E-1 LVL=3 ERR=5.6E-2 
LVL=2 ERR=1.2E1 LVL=2 ERR=1.3E1 
LVL=2 ERR=2.7EO LVL=2 ERR=2.9EO 
LVL=1 ERR=1.4Ei LVL=1 ERR=1.5E1 
LVL=1 ERR=3.5EO LVL=1 ERR=3.8EO 
LVL=3 ERR=4.3E-1 LVL=3 ERR=4.2E-1 
LVL=3 ERR=1.9E-2 LVL=3 ERR=1.8E-2 
LVL=2 ERR=9.7E-1 LVL=2 ERR=1.OEO 
LVL=2 ERR=2.2E-1 LVL=2 ERR=2.2E-1 
LVL=1 ERR=9.8E-1 LVL=1 ERR=1.OEO 
LVL=1 ERR=2.9E-1 LVL=1 ERR=3.1E-1 
LVL=3 ERR=2.6E-2 LVL=3 ERR=2.3E-2 
LVL=3 ERR=2.1E-3 LVL=3 ERR=1.5E-3 
LVL=2 ERR=7.8E-2 LVL=2 ERR=7.8E-2 
LVL=2 ERR=1.7E-2 LVL=2 ERR=1.6E-3 
LVL=1 ERR=8.3E-2 LVL=1 ERR=8.3E-2 
LVL=1 ERR=2.7E-2 LVL=1 ERR=2.8E-2 
LVL=3 ERR=2.3E-3 LVL=3 ERR=2.1E-3 
LVL=3 ERR=1.7E-4 LVL=3 ERR=1.2E-4 
LVL=2 ERR=5.9E-3 LVL=2 ERR=5.9E-3 
LVL=2 ERR=1.2E-3 LVL=2 ERR=1.2E-3 
LVL=1 ERR=7.6E-3 LVL=1 ERR=7.6E-3 
LVL=1 ERR=2.7E-3 LVL=1 ERR=2.7E-3 
LVL=3 ERR=2.1E-4 LVL=3 ERR=1.8E-4 
LVL=3 ERR=9.6E-6 LVL=3 ERR=5.8E-6 
LVL=2 ERR=4.8E-4 LVL=2 ERR=4.9E-4 
LVL=2 ERR=7.7E-5 LVL=2 ERR=7.1E-5 
LVL=1 ERR=7.5E-4 LVL=1 ERR=7.6E-4 
LVL=1 ERR=2.5E-4 LVL=1 ERR=2.6E-4 

Nonlinear Simple Nonlinear Simple 
Cycle Unigrid Cycle Unigrid 
Output Output 

One possible grid alignment approximation scheme is to collapse the boundary 
onto grid lines and use as boundary date the (weighted) values of the finer grid 
solution approximation at the points on which the boundary is collapsed. To test the 
effect of this approach with unigrid, it is enough to specify a number of grid points 
in one or both directions that is not of the form 2m + 1, where m is the number of 
grids. For the sample run in column 3 of Table 6, the number of x points is 26 which 
means that the exact right boundary on level 2 is a half grid size from coarse grid 
points. Statement 420 in Table 3 therefore has the effect of ignoring those directions 
that extend beyond this boundary. The resulting efficiency as depicted in column 3 
of Table 6 is significantly degraded over the similar run depicted in Table 4. 

Another possibility is to expand the boundary to align it properly with the coarse 
grid. This is done in multigrid by defining the interpolation operator that is natural 
for relating these grids. For unigrid this is done simply by clipping the directions 
where they overlap the fine grid region. Table 7 illustrates a unigrid code modified 
for this purpose (with new statements 455-457 and changes to 420 and 460). A 
sample run is shown in Table 8. Note that this version of multigrid fully restores the 
efficiency observed in Table 4. 



62 S. F. McCORMICK AND J. W. RUGE 

The second sample use of unigrid is illustrated by the code in Table 9. This 
program is a modification of that in Table 5 that applies to the nonlinear problem 

-Au + Xe' = f in Q = (0, al) X (0, ,P)5 
u=b on a. 

Sample runs with X .1 and X = 2 are in columns 1 and 2, respectively, of Table 10. 
The total human effort for achieving the results described in this section was less 

than one man-hour. 

Acknowledgement. This work was supported by the National Science Foundation 
under grant number MCS78-03847 and the Air Force Office of Scientific Research 
under grant number F33615-79-C-3223. 

Department of Mathematics 
Colorado State University 
Fort Collins, Colorado 80523 

1. A. BRANDT, "Multilevel adaptive solutions to boundary value problems", Math. Conip., v. 31, 1977, 
pp. 333-390. 

2. S. F. MCCORMICK & J. W. RUGE, "Multigrid for variational problems," SIAM.I. Nunmer. Alail., v. 
19, 1982, pp. 924-929. 


